Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
Lancet ; 403(10437): 1660-1670, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38583454

ABSTRACT

BACKGROUND: The RTS,S/AS01E malaria vaccine (RTS,S) was introduced by national immunisation programmes in Ghana, Kenya, and Malawi in 2019 in large-scale pilot schemes. We aimed to address questions about feasibility and impact, and to assess safety signals that had been observed in the phase 3 trial that included an excess of meningitis and cerebral malaria cases in RTS,S recipients, and the possibility of an excess of deaths among girls who received RTS,S than in controls, to inform decisions about wider use. METHODS: In this prospective evaluation, 158 geographical clusters (66 districts in Ghana; 46 sub-counties in Kenya; and 46 groups of immunisation clinic catchment areas in Malawi) were randomly assigned to early or delayed introduction of RTS,S, with three doses to be administered between the ages of 5 months and 9 months and a fourth dose at the age of approximately 2 years. Primary outcomes of the evaluation, planned over 4 years, were mortality from all causes except injury (impact), hospital admission with severe malaria (impact), hospital admission with meningitis or cerebral malaria (safety), deaths in girls compared with boys (safety), and vaccination coverage (feasibility). Mortality was monitored in children aged 1-59 months throughout the pilot areas. Surveillance for meningitis and severe malaria was established in eight sentinel hospitals in Ghana, six in Kenya, and four in Malawi. Vaccine uptake was measured in surveys of children aged 12-23 months about 18 months after vaccine introduction. We estimated that sufficient data would have accrued after 24 months to evaluate each of the safety signals and the impact on severe malaria in a pooled analysis of the data from the three countries. We estimated incidence rate ratios (IRRs) by comparing the ratio of the number of events in children age-eligible to have received at least one dose of the vaccine (for safety outcomes), or age-eligible to have received three doses (for impact outcomes), to that in non-eligible age groups in implementation areas with the equivalent ratio in comparison areas. To establish whether there was evidence of a difference between girls and boys in the vaccine's impact on mortality, the female-to-male mortality ratio in age groups eligible to receive the vaccine (relative to the ratio in non-eligible children) was compared between implementation and comparison areas. Preliminary findings contributed to WHO's recommendation in 2021 for widespread use of RTS,S in areas of moderate-to-high malaria transmission. FINDINGS: By April 30, 2021, 652 673 children had received at least one dose of RTS,S and 494 745 children had received three doses. Coverage of the first dose was 76% in Ghana, 79% in Kenya, and 73% in Malawi, and coverage of the third dose was 66% in Ghana, 62% in Kenya, and 62% in Malawi. 26 285 children aged 1-59 months were admitted to sentinel hospitals and 13 198 deaths were reported through mortality surveillance. Among children eligible to have received at least one dose of RTS,S, there was no evidence of an excess of meningitis or cerebral malaria cases in implementation areas compared with comparison areas (hospital admission with meningitis: IRR 0·63 [95% CI 0·22-1·79]; hospital admission with cerebral malaria: IRR 1·03 [95% CI 0·61-1·74]). The impact of RTS,S introduction on mortality was similar for girls and boys (relative mortality ratio 1·03 [95% CI 0·88-1·21]). Among children eligible for three vaccine doses, RTS,S introduction was associated with a 32% reduction (95% CI 5-51%) in hospital admission with severe malaria, and a 9% reduction (95% CI 0-18%) in all-cause mortality (excluding injury). INTERPRETATION: In the first 2 years of implementation of RTS,S, the three primary doses were effectively deployed through national immunisation programmes. There was no evidence of the safety signals that had been observed in the phase 3 trial, and introduction of the vaccine was associated with substantial reductions in hospital admission with severe malaria. Evaluation continues to assess the impact of four doses of RTS,S. FUNDING: Gavi, the Vaccine Alliance; the Global Fund to Fight AIDS, Tuberculosis and Malaria; and Unitaid.


Subject(s)
Feasibility Studies , Immunization Programs , Malaria Vaccines , Malaria, Cerebral , Humans , Ghana/epidemiology , Malawi/epidemiology , Infant , Female , Kenya/epidemiology , Malaria Vaccines/administration & dosage , Malaria Vaccines/adverse effects , Male , Child, Preschool , Malaria, Cerebral/epidemiology , Malaria, Cerebral/mortality , Prospective Studies , Malaria, Falciparum/prevention & control , Malaria, Falciparum/epidemiology , Meningitis/epidemiology , Meningitis/prevention & control
2.
Lancet Infect Dis ; 24(1): 75-86, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37625434

ABSTRACT

BACKGROUND: Seasonal vaccination with the RTS,S/AS01E vaccine combined with seasonal malaria chemoprevention (SMC) prevented malaria in young children more effectively than either intervention given alone over a 3 year period. The objective of this study was to establish whether the added protection provided by the combination could be sustained for a further 2 years. METHODS: This was a double-blind, individually randomised, controlled, non-inferiority and superiority, phase 3 trial done at two sites: the Bougouni district and neighbouring areas in Mali and Houndé district, Burkina Faso. Children who had been enrolled in the initial 3-year trial when aged 5-17 months were initially randomly assigned individually to receive SMC with sulphadoxine-pyrimethamine and amodiaquine plus control vaccines, RTS,S/AS01E plus placebo SMC, or SMC plus RTS,S/AS01E. They continued to receive the same interventions until the age of 5 years. The primary trial endpoint was the incidence of clinical malaria over the 5-year trial period in both the modified intention-to-treat and per-protocol populations. Over the 5-year period, non-inferiority was defined as a 20% increase in clinical malaria in the RTS,S/AS01E-alone group compared with the SMC alone group. Superiority was defined as a 12% difference in the incidence of clinical malaria between the combined and single intervention groups. The study is registered with ClinicalTrials.gov, NCT04319380, and is complete. FINDINGS: In April, 2020, of 6861 children originally recruited, 5098 (94%) of the 5433 children who completed the initial 3-year follow-up were re-enrolled in the extension study. Over 5 years, the incidence of clinical malaria per 1000 person-years at risk was 313 in the SMC alone group, 320 in the RTS,S/AS01E-alone group, and 133 in the combined group. The combination of RTS,S/AS01E and SMC was superior to SMC (protective efficacy 57·7%, 95% CI 53·3 to 61·7) and to RTS,S/AS01E (protective efficacy 59·0%, 54·7 to 62·8) in preventing clinical malaria. RTS,S/AS01E was non-inferior to SMC (hazard ratio 1·03 [95% CI 0·95 to 1·12]). The protective efficacy of the combination versus SMC over the 5-year period of the study was very similar to that seen in the first 3 years with the protective efficacy of the combination versus SMC being 57·7% (53·3 to 61·7) and versus RTS/AS01E-alone being 59·0% (54·7 to 62·8). The comparable figures for the first 3 years of the study were 62·8% (58·4 to 66·8) and 59·6% (54·7 to 64·0%), respectively. Hospital admissions for WHO-defined severe malaria were reduced by 66·8% (95% CI 40·3 to 81·5), for malarial anaemia by 65·9% (34·1 to 82·4), for blood transfusion by 68·1% (32·6 to 84·9), for all-cause deaths by 44·5% (2·8 to 68·3), for deaths excluding external causes or surgery by 41·1% (-9·2 to 68·3), and for deaths from malaria by 66·8% (-2·7 to 89·3) in the combined group compared with the SMC alone group. No safety signals were detected. INTERPRETATION: Substantial protection against malaria was sustained over 5 years by combining seasonal malaria vaccination with seasonal chemoprevention, offering a potential new approach to malaria control in areas with seasonal malaria transmission. FUNDING: UK Joint Global Health Trials and PATH's Malaria Vaccine Initiative (through a grant from the Bill & Melinda Gates Foundation). TRANSLATION: For the French translation of the abstract see Supplementary Materials section.


Subject(s)
Malaria Vaccines , Malaria, Falciparum , Malaria , Child , Humans , Infant , Child, Preschool , Mali/epidemiology , Burkina Faso/epidemiology , Seasons , Malaria/epidemiology , Malaria/prevention & control , Vaccination , Chemoprevention , Malaria, Falciparum/epidemiology , Malaria, Falciparum/prevention & control
3.
Lancet Infect Dis ; 23(3): 361-370, 2023 03.
Article in English | MEDLINE | ID: mdl-36328000

ABSTRACT

BACKGROUND: Seasonal malaria chemoprevention is used in 13 countries in the Sahel region of Africa to prevent malaria in children younger than 5 years. Resistance of Plasmodium falciparum to seasonal malaria chemoprevention drugs across the region is a potential threat to this intervention. METHODS: Between December, 2015, and March, 2016, and between December, 2017, and March, 2018, immediately following the 2015 and 2017 malaria transmission seasons, community surveys were done among children younger than 5 years and individuals aged 10-30 years in districts implementing seasonal malaria chemoprevention with sulfadoxine-pyrimethamine and amodiaquine in Burkina Faso, Chad, Guinea, Mali, Nigeria, Niger and The Gambia. Dried blood samples were collected and tested for P falciparum DNA by PCR. Resistance-associated haplotypes of the P falciparum genes crt, mdr1, dhfr, and dhps were identified by quantitative PCR and sequencing of isolates from the collected samples, and survey-weighted prevalence and prevalence ratio between the first and second surveys were estimated for each variant. FINDINGS: 5130 (17·5%) of 29 274 samples from 2016 and 2176 (7·6%) of 28 546 samples from 2018 were positive for P falciparum on quantitative PCR. Among children younger than 5 years, parasite carriage decreased from 2844 of 14 345 samples (19·8% [95% CI 19·2-20·5]) in 2016 to 801 of 14 019 samples (5·7% [5·3-6·1]) in 2018 (prevalence ratio 0·27 [95% CI 0·24-0·31], p<0·0001). Genotyping found no consistent evidence of increasing prevalence of amodiaquine resistance-associated variants of crt and mdr1 between 2016 and 2018. The dhfr haplotype IRN (consisting of 51Ile-59Arg-108Asn) was common at both survey timepoints, but the dhps haplotype ISGEAA (431Ile-436Ser-437Gly-540Glu-581Ala-613Ala), crucial for resistance to sulfadoxine-pyrimethamine, was always rare. Parasites carrying amodiaquine resistance-associated variants of both crt and mdr1 together with dhfr IRN and dhps ISGEAA occurred in 0·05% of isolates. The emerging dhps haplotype VAGKGS (431Val-436Ala-437Gly-540Lys-581Gly-613Ser) was present in four countries. INTERPRETATION: In seven African countries, evidence of a significant reduction in parasite carriage among children receiving seasonal malaria chemoprevention was found 2 years after intervention scale-up. Combined resistance-associated haplotypes remained rare, and seasonal malaria chemoprevention with sulfadoxine-pyrimethamine and amodiaquine is expected to retain effectiveness. The threat of future erosion of effectiveness due to dhps variant haplotypes requires further monitoring. FUNDING: Unitaid.


Subject(s)
Antimalarials , Malaria, Falciparum , Malaria , Child , Humans , Plasmodium falciparum , Amodiaquine/therapeutic use , Haplotypes , Antimalarials/therapeutic use , Seasons , Prevalence , Pyrimethamine/therapeutic use , Sulfadoxine/therapeutic use , Malaria/drug therapy , Malaria, Falciparum/drug therapy , Drug Combinations , Chemoprevention , Nigeria , Tetrahydrofolate Dehydrogenase/genetics , Tetrahydrofolate Dehydrogenase/therapeutic use , Genomics , Drug Resistance/genetics
4.
BMC Med ; 20(1): 352, 2022 10 07.
Article in English | MEDLINE | ID: mdl-36203149

ABSTRACT

BACKGROUND: A recent trial of 5920 children in Burkina Faso and Mali showed that the combination of seasonal vaccination with the RTS,S/AS01E malaria vaccine (primary series and two seasonal boosters) and seasonal malaria chemoprevention (four monthly cycles per year) was markedly more effective than either intervention given alone in preventing clinical malaria, severe malaria, and deaths from malaria. METHODS: In order to help optimise the timing of these two interventions, trial data were reanalysed to estimate the duration of protection against clinical malaria provided by RTS,S/AS01E when deployed seasonally, by comparing the group who received the combination of SMC and RTS,S/AS01E with the group who received SMC alone. The duration of protection from SMC was also estimated comparing the combined intervention group with the group who received RTS,S/AS01E alone. Three methods were used: Piecewise Cox regression, Flexible parametric survival models and Smoothed Schoenfeld residuals from Cox models, stratifying on the study area and using robust standard errors to control for within-child clustering of multiple episodes. RESULTS: The overall protective efficacy from RTS,S/AS01E over 6 months was at least 60% following the primary series and the two seasonal booster doses and remained at a high level over the full malaria transmission season. Beyond 6 months, protective efficacy appeared to wane more rapidly, but the uncertainty around the estimates increases due to the lower number of cases during this period (coinciding with the onset of the dry season). Protection from SMC exceeded 90% in the first 2-3 weeks post-administration after several cycles, but was not 100%, even immediately post-administration. Efficacy begins to decline from approximately day 21 and then declines more sharply after day 28, indicating the importance of preserving the delivery interval for SMC cycles at a maximum of four weeks. CONCLUSIONS: The efficacy of both interventions was highest immediately post-administration. Understanding differences between these interventions in their peak efficacy and how rapidly efficacy declines over time will help to optimise the scheduling of SMC, malaria vaccination and the combination in areas of seasonal transmission with differing epidemiology, and using different vaccine delivery systems. TRIAL REGISTRATION: The RTS,S-SMC trial in which these data were collected was registered at clinicaltrials.gov: NCT03143218.


Subject(s)
Malaria Vaccines , Malaria, Falciparum , Malaria , Antibodies, Protozoan , Chemoprevention , Humans , Infant , Malaria/epidemiology , Malaria/prevention & control , Malaria, Falciparum/epidemiology , Plasmodium falciparum , Seasons , Vaccination
5.
Malar J ; 21(1): 59, 2022 Feb 22.
Article in English | MEDLINE | ID: mdl-35193608

ABSTRACT

BACKGROUND: A recent trial in Burkina Faso and Mali showed that combining seasonal RTS,S/AS01E malaria vaccination with seasonal malaria chemoprevention (SMC) substantially reduced the incidence of uncomplicated and severe malaria in young children compared to either intervention alone. Given the possible negative effect of malaria on nutrition, the study investigated whether these children also experienced lower prevalence of acute and chronic malnutrition. METHODS: In Burkina Faso and Mali 5920 children were randomized to receive either SMC alone, RTS,S/AS01E alone, or SMC combined with RTS,S/AS01E for three malaria transmission seasons (2017-2019). After each transmission season, anthropometric measurements were collected from all study children at a cross-sectional survey and used to derive nutritional status indicators, including the binary variables wasted and stunted (weight-for-height and height-for-age z-scores below - 2, respectively). Binary and continuous outcomes between treatment groups were compared by Poisson and linear regression. RESULTS: In 2017, compared to SMC alone, the combined intervention reduced the prevalence of wasting by approximately 12% [prevalence ratio (PR) = 0.88 (95% CI 0.75, 1.03)], and approximately 21% in 2018 [PR = 0.79 (95% CI 0.62, 1.01)]. Point estimates were similar for comparisons with RTS,S/AS01E, but there was stronger evidence of a difference. There was at least a 30% reduction in the point estimates for the prevalence of severe wasting in the combined group compared to the other two groups in 2017 and 2018. There was no difference in the prevalence of moderate or severe wasting between the groups in 2019. The prevalence of stunting, low-MUAC-for-age or being underweight did not differ between groups for any of the three years. The prevalence of severe stunting was higher in the combined group compared to both other groups in 2018, and compared to RTS,S/AS01E alone in 2017; this observation does not have an obvious explanation and may be a chance finding. Overall, malnutrition was very common in this cohort, but declined over the study as the children became older. CONCLUSIONS: Despite a high burden of malnutrition and malaria in the study populations, and a major reduction in the incidence of malaria in children receiving both interventions, this had only a modest impact on nutritional status. Therefore, other interventions are needed to reduce the high burden of malnutrition in these areas. TRIAL REGISTRATION: https://www.clinicaltrials.gov/ct2/show/NCT03143218 , registered 8th May 2017.


Subject(s)
Antimalarials , Malaria , Antimalarials/therapeutic use , Burkina Faso/epidemiology , Chemoprevention , Child , Child, Preschool , Cross-Sectional Studies , Humans , Infant , Malaria/drug therapy , Malaria/epidemiology , Malaria/prevention & control , Mali/epidemiology , Nutritional Status , Seasons , Vaccination
6.
Clin Infect Dis ; 75(4): 613-622, 2022 09 10.
Article in English | MEDLINE | ID: mdl-34894221

ABSTRACT

BACKGROUND: A trial in African children showed that combining seasonal vaccination with the RTS,S/AS01E vaccine with seasonal malaria chemoprevention reduced the incidence of uncomplicated and severe malaria compared with either intervention given alone. Here, we report on the anti-circumsporozoite antibody response to seasonal RTS,S/AS01E vaccination in children in this trial. METHODS: Sera from a randomly selected subset of children collected before and 1 month after 3 priming doses of RTS,S/AS01E and before and 1 month after 2 seasonal booster doses were tested for anti-circumsporozoite antibodies using enzyme-linked immunosorbent assay. The association between post-vaccination antibody titer and incidence of malaria was explored. RESULTS: A strong anti-circumsporozoite antibody response to 3 priming doses of RTS,S/AS01E was seen (geometric mean titer, 368.9 enzyme-linked immunosorbent assay units/mL), but titers fell prior to the first booster dose. A strong antibody response to an annual, pre-malaria transmission season booster dose was observed, but this was lower than after the primary vaccination series and lower after the second than after the first booster dose (ratio of geometric mean rise, 0.66; 95% confidence interval [CI], .57-.77). Children whose antibody response was in the upper tercile post-vaccination had a lower incidence of malaria during the following year than children in the lowest tercile (hazard ratio, 0.43; 95% CI, .28-.66). CONCLUSIONS: Seasonal vaccination with RTS,S/AS01E induced a strong booster antibody response that was lower after the second than after the first booster dose. The diminished antibody response to the second booster dose was not associated with diminished efficacy. CLINICAL TRIALS REGISTRATION: NCT03143218.


Subject(s)
Malaria Vaccines , Malaria, Falciparum , Malaria , Antibody Formation , Child , Humans , Infant , Malaria, Falciparum/epidemiology , Malaria, Falciparum/prevention & control , Plasmodium falciparum , Seasons , Vaccination
7.
PLoS Med ; 18(9): e1003727, 2021 09.
Article in English | MEDLINE | ID: mdl-34495978

ABSTRACT

BACKGROUND: Seasonal malaria chemoprevention (SMC) has shown high protective efficacy against clinical malaria and severe malaria in a series of clinical trials. We evaluated the effectiveness of SMC treatments against clinical malaria when delivered at scale through national malaria control programmes in 2015 and 2016. METHODS AND FINDINGS: Case-control studies were carried out in Mali and The Gambia in 2015, and in Burkina Faso, Chad, Mali, Nigeria, and The Gambia in 2016. Children aged 3-59 months presenting at selected health facilities with microscopically confirmed clinical malaria were recruited as cases. Two controls per case were recruited concurrently (on or shortly after the day the case was detected) from the neighbourhood in which the case lived. The primary exposure was the time since the most recent course of SMC treatment, determined from SMC recipient cards, caregiver recall, and administrative records. Conditional logistic regression was used to estimate the odds ratio (OR) associated with receipt of SMC within the previous 28 days, and SMC 29 to 42 days ago, compared with no SMC in the past 42 days. These ORs, which are equivalent to incidence rate ratios, were used to calculate the percentage reduction in clinical malaria incidence in the corresponding time periods. Results from individual countries were pooled in a random-effects meta-analysis. In total, 2,126 cases and 4,252 controls were included in the analysis. Across the 7 studies, the mean age ranged from 1.7 to 2.4 years and from 2.1 to 2.8 years among controls and cases, respectively; 42.2%-50.9% and 38.9%-46.9% of controls and cases, respectively, were male. In all 7 individual case-control studies, a high degree of personal protection from SMC against clinical malaria was observed, ranging from 73% in Mali in 2016 to 98% in Mali in 2015. The overall OR for SMC within 28 days was 0.12 (95% CI: 0.06, 0.21; p < 0.001), indicating a protective effectiveness of 88% (95% CI: 79%, 94%). Effectiveness against clinical malaria for SMC 29-42 days ago was 61% (95% CI: 47%, 72%). Similar results were obtained when the analysis was restricted to cases with parasite density in excess of 5,000 parasites per microlitre: Protective effectiveness 90% (95% CI: 79%, 96%; P<0.001), and 59% (95% CI: 34%, 74%; P<0.001) for SMC 0-28 days and 29-42 days ago, respectively. Potential limitations include the possibility of residual confounding due to an association between exposure to malaria and access to SMC, or differences in access to SMC between patients attending a clinic and community controls; however, neighbourhood matching of cases and controls, and covariate adjustment, attempted to control for these aspects, and the observed decline in protection over time, consistent with expected trends, argues against a major bias from these sources. CONCLUSIONS: SMC administered as part of routine national malaria control activities provided a very high level of personal protection against clinical malaria over 28 days post-treatment, similar to the efficacy observed in clinical trials. The case-control design used in this study can be used at intervals to ensure SMC treatments remain effective.


Subject(s)
Amodiaquine/therapeutic use , Antimalarials/therapeutic use , Communicable Disease Control , Malaria, Falciparum/prevention & control , Plasmodium falciparum/drug effects , Pyrimethamine/therapeutic use , Seasons , Sulfadoxine/therapeutic use , Africa, Western/epidemiology , Age Factors , Amodiaquine/adverse effects , Antimalarials/adverse effects , Case-Control Studies , Child, Preschool , Drug Combinations , Female , Humans , Incidence , Infant , Malaria, Falciparum/diagnosis , Malaria, Falciparum/epidemiology , Malaria, Falciparum/parasitology , Male , Parasite Load , Plasmodium falciparum/growth & development , Program Evaluation , Pyrimethamine/adverse effects , Risk Assessment , Risk Factors , Sulfadoxine/adverse effects , Time Factors , Treatment Outcome
8.
N Engl J Med ; 385(11): 1005-1017, 2021 09 09.
Article in English | MEDLINE | ID: mdl-34432975

ABSTRACT

BACKGROUND: Malaria control remains a challenge in many parts of the Sahel and sub-Sahel regions of Africa. METHODS: We conducted an individually randomized, controlled trial to assess whether seasonal vaccination with RTS,S/AS01E was noninferior to chemoprevention in preventing uncomplicated malaria and whether the two interventions combined were superior to either one alone in preventing uncomplicated malaria and severe malaria-related outcomes. RESULTS: We randomly assigned 6861 children 5 to 17 months of age to receive sulfadoxine-pyrimethamine and amodiaquine (2287 children [chemoprevention-alone group]), RTS,S/AS01E (2288 children [vaccine-alone group]), or chemoprevention and RTS,S/AS01E (2286 children [combination group]). Of these, 1965, 1988, and 1967 children in the three groups, respectively, received the first dose of the assigned intervention and were followed for 3 years. Febrile seizure developed in 5 children the day after receipt of the vaccine, but the children recovered and had no sequelae. There were 305 events of uncomplicated clinical malaria per 1000 person-years at risk in the chemoprevention-alone group, 278 events per 1000 person-years in the vaccine-alone group, and 113 events per 1000 person-years in the combination group. The hazard ratio for the protective efficacy of RTS,S/AS01E as compared with chemoprevention was 0.92 (95% confidence interval [CI], 0.84 to 1.01), which excluded the prespecified noninferiority margin of 1.20. The protective efficacy of the combination as compared with chemoprevention alone was 62.8% (95% CI, 58.4 to 66.8) against clinical malaria, 70.5% (95% CI, 41.9 to 85.0) against hospital admission with severe malaria according to the World Health Organization definition, and 72.9% (95% CI, 2.9 to 92.4) against death from malaria. The protective efficacy of the combination as compared with the vaccine alone against these outcomes was 59.6% (95% CI, 54.7 to 64.0), 70.6% (95% CI, 42.3 to 85.0), and 75.3% (95% CI, 12.5 to 93.0), respectively. CONCLUSIONS: Administration of RTS,S/AS01E was noninferior to chemoprevention in preventing uncomplicated malaria. The combination of these interventions resulted in a substantially lower incidence of uncomplicated malaria, severe malaria, and death from malaria than either intervention alone. (Funded by the Joint Global Health Trials and PATH; ClinicalTrials.gov number, NCT03143218.).


Subject(s)
Amodiaquine/therapeutic use , Antimalarials/therapeutic use , Malaria Vaccines , Malaria, Falciparum/prevention & control , Pyrimethamine/therapeutic use , Sulfadoxine/therapeutic use , Antimalarials/adverse effects , Burkina Faso/epidemiology , Chemoprevention , Combined Modality Therapy , Double-Blind Method , Drug Combinations , Drug Therapy, Combination , Female , Hospitalization/statistics & numerical data , Humans , Infant , Malaria Vaccines/administration & dosage , Malaria Vaccines/adverse effects , Malaria, Falciparum/epidemiology , Malaria, Falciparum/mortality , Male , Mali/epidemiology , Seasons , Seizures, Febrile/etiology
9.
Int J Epidemiol ; 44(3): 837-47, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25948661

ABSTRACT

The Farafenni Health and Demographic Surveillance System (Farafenni HDSS) is located 170 km from the coast in a rural area of The Gambia, north of the River Gambia. It was set up in 1981 by the UK Medical Research Council Laboratories to generate demographic and health information required for the evaluation of a village-based, primary health care programme in 40 villages. Regular updates of demographic events and residency status have subsequently been conducted every 4 months. The surveillance area was extended in 2002 to include Farafenni Town and surrounding villages to support randomized, controlled trials. With over three decades of prospective surveillance, and through specific scientific investigations, the platform (population ≈ 50,000) has generated data on: morbidity and mortality due to malaria in children and during pregnancy; non-communicable disease among adults; reproductive health; and levels and trends in childhood and maternal mortality. Other information routinely collected includes causes of death through verbal autopsy, and household socioeconomic indicators. The current portfolio of the platform includes tracking Millennium Development Goal 4 (MDG4) attainments in rural Gambia and cause-of-death determination.


Subject(s)
Health Surveys , Population Surveillance/methods , Autopsy , Cause of Death , Female , Gambia/ethnology , Humans , Malaria/mortality , Maternal Mortality/trends , Morbidity , Pregnancy , Prospective Studies , Rural Population , Socioeconomic Factors
10.
PLoS One ; 6(6): e17371, 2011.
Article in English | MEDLINE | ID: mdl-21666744

ABSTRACT

BACKGROUND: Chlorproguanil-dapsone (Lapdap), developed as a low-cost antimalarial, was withdrawn in 2008 after concerns about safety in G6PD deficient patients. This trial was conducted in 2004 to evaluate the safety and effectiveness of CD and comparison with artemether-lumefantrine (AL) under conditions of routine use in G6PD normal and G6PD deficient patients with uncomplicated malaria in The Gambia. We also examined the effects of a common genetic variant that affects chlorproguanil metabolism on risk of treatment failure. METHODS: 1238 children aged 6 months to 10 years with uncomplicated malaria were randomized to receive CD or artemether-lumefantrine (AL) and followed for 28 days. The first dose was supervised, subsequent doses given unsupervised at home. G6PD genotype was determined to assess the interaction between treatment and G6PD status in their effects on anaemia. The main endpoints were clinical treatment failure by day 28, incidence of severe anaemia (Hb<5 g/dL), and haemoglobin concentration on day 3. FINDINGS: One third of patients treated with AL, and 6% of patients treated with CD, did not complete their course of medication. 18% (109/595) of children treated with CD and 6.1% (36/587) with AL required rescue medication within 4 weeks, risk difference 12% (95%CI 8.9%-16%). 23 children developed severe anaemia (17 (2.9%) treated with CD and 6 (1.0%) with AL, risk difference 1.8%, 95%CI 0.3%-3.4%, P = 0.02). Haemoglobin concentration on day 3 was lower among children treated with CD than AL (difference 0.43 g/dL, 95% CI 0.24 to 0.62), and within the CD group was lower among those children who had higher parasite density at enrollment. Only 17 out of 1069 children who were typed were G6PD A- deficient, of these 2/9 treated with CD and 1/8 treated with AL developed severe anaemia. 5/9 treated with CD had a fall of 2 g/dL or more in haemoglobin concentration by day 3. INTERPRETATION: AL was well tolerated and highly effective and when given under operational conditions despite poor adherence to the six-dose regimen. There were more cases of severe malaria and anaemia after CD treatment although G6PD deficiency was uncommon. TRIAL REGISTRATION: Clinicaltrials.gov NCT00118794.


Subject(s)
Antimalarials/adverse effects , Antimalarials/therapeutic use , Artemisinins/adverse effects , Artemisinins/therapeutic use , Dapsone/adverse effects , Dapsone/therapeutic use , Ethanolamines/adverse effects , Ethanolamines/therapeutic use , Fluorenes/adverse effects , Fluorenes/therapeutic use , Malaria/drug therapy , Proguanil/analogs & derivatives , Animals , Antimalarials/pharmacology , Artemether, Lumefantrine Drug Combination , Artemisinins/pharmacology , Aryl Hydrocarbon Hydroxylases/genetics , Case-Control Studies , Child , Cytochrome P-450 CYP2C19 , Dapsone/pharmacology , Drug Combinations , Ethanolamines/pharmacology , Female , Fluorenes/pharmacology , Gambia/epidemiology , Genotype , Glucosephosphate Dehydrogenase/genetics , Hemoglobins/metabolism , Humans , Incidence , Infant , Malaria/enzymology , Malaria/epidemiology , Malaria/parasitology , Male , Parasites/drug effects , Patient Compliance , Proguanil/adverse effects , Proguanil/pharmacology , Proguanil/therapeutic use , Treatment Failure , Treatment Outcome
11.
PLoS Negl Trop Dis ; 3(12): e573, 2009 Dec 22.
Article in English | MEDLINE | ID: mdl-20027217

ABSTRACT

BACKGROUND: Trachoma has been endemic in The Gambia for decades. National trachoma control activities have been in place since the mid-1980's, but with no mass antibiotic treatment campaign. We aimed to assess the prevalence of active trachoma and of actual ocular Chlamydia trachomatis infection as measured by polymerase chain reaction (PCR) in the two Gambian regions that had had the highest prevalence of trachoma in the last national survey in 1996 prior to planned national mass antibiotic treatment distribution in 2006. METHODOLOGY/PRINCIPAL FINDINGS: Two stage random sampling survey in 61 randomly selected Enumeration Areas (EAs) in North Bank Region (NBR) and Lower River Region (LRR). Fifty randomly selected children aged under 10 years were examined per EA for clinical signs of trachoma. In LRR, swabs were taken to test for ocular C. trachomatis infection. Unadjusted prevalences of active trachoma were calculated, as would be done in a trachoma control programme. The prevalence of trachomatous inflammation, follicular (TF) in the 2777 children aged 1-9 years was 12.3% (95% CI 8.8%-17.0%) in LRR and 10.0% (95% CI 7.7%-13.0%) in NBR, with significant variation within divisions (p<0.01), and a design effect of 3.474. Infection with C. trachomatis was found in only 0.3% (3/940) of children in LRR. CONCLUSIONS/SIGNIFICANCE: This study shows a large discrepancy between the prevalence of trachoma clinical signs and ocular C. trachomatis infection in two Gambian regions. Assessment of trachoma based on clinical signs alone may lead to unnecessary treatment, since the prevalence of active trachoma remains high but C. trachomatis infection has all but disappeared. Assuming that repeated infection is required for progression to blinding sequelae, blinding trachoma is on course for elimination by 2020 in The Gambia.


Subject(s)
Chlamydia trachomatis/isolation & purification , Trachoma/epidemiology , Trachoma/microbiology , Child , Child, Preschool , Chlamydia trachomatis/physiology , Communicable Disease Control , Cross-Sectional Studies , Female , Gambia/epidemiology , Humans , Infant , Male , Prevalence
12.
Lancet ; 374(9694): 998-1009, 2009 Sep 19.
Article in English | MEDLINE | ID: mdl-19732949

ABSTRACT

BACKGROUND: House screening should protect people against malaria. We assessed whether two types of house screening--full screening of windows, doors, and closing eaves, or installation of screened ceilings--could reduce house entry of malaria vectors and frequency of anaemia in children in an area of seasonal malaria transmission. METHODS: During 2006 and 2007, 500 occupied houses in and near Farafenni town in The Gambia, an area with low use of insecticide-treated bednets, were randomly assigned to receive full screening, screened ceilings, or no screening (control). Randomisation was done by computer-generated list, in permuted blocks of five houses in the ratio 2:2:1. Screening was not treated with insecticide. Exposure to mosquitoes indoors was assessed by fortnightly light trap collections during the transmission season. Primary endpoints included the number of female Anopheles gambiae sensu lato mosquitoes collected per trap per night. Secondary endpoints included frequency of anaemia (haemoglobin concentration <80 g/L) and parasitaemia at the end of the transmission season in children (aged 6 months to 10 years) who were living in the study houses. Analysis was by modified intention to treat (ITT), including all randomised houses for which there were some outcome data and all children from those houses who were sampled for haemoglobin and parasitaemia. This study is registered as an International Standard Randomised Controlled Trial, number ISRCTN51184253. FINDINGS: 462 houses were included in the modified ITT analysis (full screening, n=188; screened ceilings, n=178; control, n=96). The mean number of A gambiae caught in houses without screening was 37.5 per trap per night (95% CI 31.6-43.3), compared with 15.2 (12.9-17.4) in houses with full screening (ratio of means 0.41, 95% CI 0.31-0.54; p<0.0001) and 19.1 (16.1-22.1) in houses with screened ceilings (ratio 0.53, 0.40-0.70; p<0.0001). 755 children completed the study, of whom 731 had complete clinical and covariate data and were used in the analysis of clinical outcomes. 30 (19%) of 158 children from control houses had anaemia, compared with 38 (12%) of 309 from houses with full screening (adjusted odds ratio [OR] 0.53, 95% CI 0.29-0.97; p=0.04), and 31 (12%) of 264 from houses with screened ceilings (OR 0.51, 0.27-0.96; p=0.04). Frequency of parasitaemia did not differ between intervention and control groups. INTERPRETATION: House screening substantially reduced the number of mosquitoes inside houses and could contribute to prevention of anaemia in children. FUNDING: Medical Research Council.


Subject(s)
Housing , Interior Design and Furnishings/methods , Malaria, Falciparum/prevention & control , Mosquito Control/methods , Analysis of Variance , Anemia/blood , Anemia/epidemiology , Anemia/parasitology , Animals , Anopheles/parasitology , Anopheles/physiology , Bedding and Linens , Child , Child, Preschool , Female , Gambia/epidemiology , Hemoglobins , Humans , Insecticides , Logistic Models , Malaria, Falciparum/complications , Malaria, Falciparum/epidemiology , Malaria, Falciparum/transmission , Male , Morbidity , Population Surveillance , Principal Component Analysis , Residence Characteristics
13.
Clin Pharmacokinet ; 48(5): 329-41, 2009.
Article in English | MEDLINE | ID: mdl-19566116

ABSTRACT

BACKGROUND AND OBJECTIVE: The pharmacokinetics of mycophenolic acid (MPA) are complex, with large interindividual variability over time. There are also well documented interactions with cyclosporin, and assessment of MPA exposure is therefore necessary when reducing or stopping cyclosporin therapy. Here we report on the pharmacokinetic and pharmacodynamic behaviour of MPA in renal transplant patients on standard dose, reduced dose and no cyclosporin. STUDY DESIGN: The CAESAR study, a prospective 12-month study in primary renal allograft recipients, was designed to determine whether mycophenolate mofetil-based regimens containing either low-dose cyclosporin or low-dose cyclosporin withdrawn by 6 months could minimize nephrotoxicity and improve renal function without an increase in acute rejection compared with a mycophenolate mofetil-based regimen containing standard-dose cyclosporin. PATIENTS AND METHODS: A subset of patients from the CAESAR study contributed to this pharmacokinetic analysis of MPA exposure. Blood samples were taken over one dosing interval on day 7 and at months 3, 7 and 12 post-transplantation. The sampling time points were predose, 20, 40 and 75 minutes and 2, 3, 4, 6, 8 and 12 hours after mycophenolate mofetil dosing. Assessments included plasma concentrations of MPA and mycophenolic acid glucuronide (MPAG) and cyclosporin trough concentrations. The area under the plasma concentration-time curve (AUC) from 0 to 12 hours (AUC(12)) for MPA was the primary pharmacokinetic parameter, and the AUC(12) for MPAG was the secondary parameter. RESULTS: In total, 536 de novo renal allograft recipients were randomized in the CAESAR study. Of these, 114 patients were entered into the pharmacokinetic substudy and 110 patients contributed to the pharmacokinetic analysis. There was a rapid rise in MPA concentrations (median time to peak concentration 0.72-1.25 hours). At day 7 and month 3, the MPA AUC(12) values were similar in the cyclosporin withdrawal and low-dose cyclosporin groups (patients with the same cyclosporin target concentrations to month 6), while at 7 and 12 months, the values in the cyclosporin withdrawal group were higher than in the low-dose group (19.9% and 30.2% higher, respectively). MPA AUC(12) values in the standard-dose cyclosporin group were lower than in the other groups at all time points and increased over time. At all time points, the MPA peak plasma concentration was similar in all groups, and the MPAG concentrations rose more slowly than MPA concentrations. The ratio of the AUC from 6 to 12 hours/AUC(12) suggests that an increasing AUC in the cyclosporin withdrawal group is due to an increase in the enterohepatic recirculation. CONCLUSION: These findings are consistent with the hypothesis that cyclosporin inhibits the biliary secretion and/or hepatic extraction of MPAG, leading to a reduced rate of enterohepatic recirculation of MPA. Several concurrent mechanisms, such as cyclosporin-induced changes in renal tubular MPAG excretion and enhanced elimination of free MPA through competitive albumin binding with MPAG, can also contribute to the altered MPAG pharmacokinetics observed in the presence and absence of cyclosporin.


Subject(s)
Cyclosporine/administration & dosage , Kidney Transplantation/physiology , Mycophenolic Acid/analogs & derivatives , Mycophenolic Acid/administration & dosage , Adult , Aged , Cyclosporine/blood , Drug Interactions/physiology , Drug Therapy, Combination , Female , Graft Rejection/blood , Graft Rejection/prevention & control , Humans , Male , Middle Aged , Mycophenolic Acid/blood , Prospective Studies , Time Factors , Young Adult
14.
Liver Transpl ; 13(11): 1570-5, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17969194

ABSTRACT

There are few pharmacokinetic data for mycophenolate mofetil (MMF) when used in combination with cyclosporine (CsA) in pediatric liver transplant recipients. The aim of this study was to assess the pharmacokinetics of MMF in stable pediatric liver transplant patients and estimate the dose of MMF required to provide a mycophenolic acid (MPA) exposure similar to that observed in adult liver transplant recipients receiving the recommended dose of MMF (target area under the plasma concentration-time curve from 0 to 12 hours [AUC(0-12)] for MPA of 29 mug.hour/mL in the immediate posttransplantation period and 58 microg x hour/mL after 6 months). A 12-hour pharmacokinetic profile was collected for 8 pediatric patients (mean age 20.9 months) on stable doses of MMF and CsA who had received a liver transplant > or = 6 months prior to entry and who had started on MMF within 2 weeks of transplantation. Mean MMF dosage was 285 mg/m(2) (range, 200-424 mg/m(2)). Of 8 patients, 7 had a MPA AUC(0-12) (range, 11.0-37.2 microg x hour/mL) well below the target. One patient had an AUC(0-12) > or = 58 microg x hour/mL but was considered an outlier and was excluded from analyses. Mean MPA AUC(0-12) and maximum plasma concentration values were 22.7 +/- 10.5 microg x hour/mL and 7.23 +/- 3.27 microg/mL, respectively; values normalized to 600 mg/m(2) (the approved pediatric dose in renal transplantation) were 47.0 +/- 21.8 microg x hour/mL and 14.5 +/- 4.21 microg/mL. In conclusion, assuming that MPA exhibits linear pharmacokinetics, when used in combination with CsA, a MMF dose of 740 mg/m(2) twice daily would be recommended in pediatric liver transplant recipients to achieve MPA exposures similar to those observed in adult liver transplant recipients. This finding should be confirmed by a prospective trial.


Subject(s)
Cyclosporine/administration & dosage , Immunosuppressive Agents/pharmacokinetics , Liver Transplantation , Mycophenolic Acid/analogs & derivatives , Area Under Curve , Child , Child, Preschool , Drug Therapy, Combination , Graft Rejection/prevention & control , Humans , Immunosuppressive Agents/administration & dosage , Immunosuppressive Agents/blood , Infant , Mycophenolic Acid/administration & dosage , Mycophenolic Acid/blood , Mycophenolic Acid/pharmacokinetics
15.
BMC Health Serv Res ; 7: 72, 2007 May 17.
Article in English | MEDLINE | ID: mdl-17509132

ABSTRACT

BACKGROUND: Access to medical literature in developing countries is helped by open access publishing and initiatives to allow free access to subscription only journals. The effectiveness of these initiatives in Africa has not been assessed. This study describes awareness, reported use and factors influencing use of on-line medical literature via free access initiatives. METHODS: Descriptive study in four teaching hospitals in Cameroon, Nigeria, Tanzania and Uganda plus one externally funded research institution in The Gambia. Survey with postgraduate doctors and research scientists to determine Internet access patterns, reported awareness of on-line medical information and free access initiatives; semi structured interviews with a sub-sample of survey participants to explore factors influencing use. RESULTS: In the four African teaching hospitals, 70% of the 305 postgraduate doctors reported textbooks as their main source of information; 66% had used the Internet for health information in the last week. In two hospitals, Internet cafés were the main Internet access point. For researchers at the externally-funded research institution, electronic resources were their main source, and almost all had used the Internet in the last week. Across all 333 respondents, 90% had heard of PubMed, 78% of BMJ on line, 49% the Cochrane Library, 47% HINARI, and 19% BioMedCentral. HINARI use correlates with accessing the Internet on computers located in institutions. Qualitative data suggested there are difficulties logging into HINARI and that sometimes it is librarians that limit access to passwords. CONCLUSION: Text books remain an important resource for postgraduate doctors in training. Internet use is common, but awareness of free-access initiatives is limited. HINARI and other initiatives could be more effective with strong institutional endorsement and management to promote and ensure access.


Subject(s)
Access to Information , General Surgery/education , Internet/statistics & numerical data , Libraries, Hospital , Library Services/statistics & numerical data , Medical Staff, Hospital/education , Online Systems/statistics & numerical data , Cameroon , Computer Security , Education, Graduate/methods , Gambia , Hospitals, Teaching , Humans , Nigeria , Qualitative Research , Tanzania , Uganda , User-Computer Interface
16.
Cytometry B Clin Cytom ; 72(1): 49-62, 2007 Jan 15.
Article in English | MEDLINE | ID: mdl-17080410

ABSTRACT

BACKGROUND: Although relational databases are widely used in bioinformatics with deposited and finalized data, they have not received widespread usage among immunologists for managing raw laboratory data such as that generated by ELISpot or flow cytometry assays. Almost no published guidance exists for immunologists to design appropriate and useful data management systems. METHODS: We describe the design and implementation of a Microsoft Access relational database used in a clinical trial in which the primary immunogenicity measures were ELISpot and intracellular cytokine staining. RESULTS: Our data management system enabled us to perform sophisticated queries and to interpret our data as quantitatively as possible. It could easily be used without modification by other researchers using automated plate reading of ELISpot plates or four color flow cytometry. CONCLUSION: We illustrate in detail the use of a flexible data management system for two of the most widely used immunological techniques. Minor modifications for more colors or other outputs can easily be implemented. Based on this example, other modifications could be easily envisaged for any other quantitative output.


Subject(s)
Clinical Trials as Topic , Database Management Systems , Flow Cytometry/methods , Immunoassay/methods , Biological Specimen Banks/organization & administration , Humans , Models, Immunological , Software
17.
Virol J ; 3: 23, 2006 Apr 04.
Article in English | MEDLINE | ID: mdl-16594999

ABSTRACT

BACKGROUND/AIM: The study aimed at developing a real-time quantitative PCR assay to monitor HBV serum virus load of chronic carriers enrolled in therapeutic trials. METHOD: Quantitative real-time PCR assay was carried out using SYBR-Green signal detection and primers specific to the S gene. Thermal cycling was performed in an ABi 5700 sequence detection system. The assay was calibrated against an international HBV DNA standard and inter- and intra-assay reproducibility determined. Levels of viral load were monitored for 1-year in lamivudine treated carriers. Correlation between HBV DNA levels and HBeAg sero-status was determined in untreated carriers. RESULTS: The qPCR assay showed good intra- and inter-assay reproducibility over a wide dynamic range (1.5 x 103 to 1.5 x 108 copies/mL) and correlated well with those from a commercial assay (r = 0.91, (p < 0.001). Viral load levels dropped dramatically but temporarily during and after a short course of lamivudine therapy. HBV DNA was a more reliable indicator of the presence of virus than HBe antigen and was detected in 77.0% (161/209) of HBeAg negative and in all HBeAg positive carriers. CONCLUSION: This method is reliable, accurate, and reproducible. HBV DNA Quantification by qPCR can be used to monitor the efficacy of HBV therapy and useful in understanding the natural history of HBV in an endemic area.


Subject(s)
Carrier State/virology , DNA, Viral/blood , Hepatitis B virus , Hepatitis B, Chronic/virology , Polymerase Chain Reaction/methods , Viral Load/methods , Adolescent , Adult , Age Factors , Aged , Antiviral Agents/administration & dosage , Antiviral Agents/therapeutic use , Carrier State/drug therapy , Child , Child, Preschool , DNA Primers/chemistry , Gambia , Hepatitis B Antibodies/blood , Hepatitis B Surface Antigens/blood , Hepatitis B e Antigens/blood , Hepatitis B virus/genetics , Hepatitis B, Chronic/drug therapy , Humans , Infant , Lamivudine/administration & dosage , Lamivudine/therapeutic use , Male , Middle Aged , Polymerase Chain Reaction/standards , Reproducibility of Results , Reverse Transcriptase Inhibitors/administration & dosage , Reverse Transcriptase Inhibitors/therapeutic use , Sensitivity and Specificity
18.
Br J Clin Pharmacol ; 59(5): 598-601, 2005 May.
Article in English | MEDLINE | ID: mdl-15842560

ABSTRACT

AIMS: To compare the pharmacokinetics of oseltamivir and oseltamivir carboxylate in hepatically impaired patients and healthy subjects. METHODS: Hepatically impaired patients (n = 11) and healthy subjects (n = 11) were individually paired on the basis of gender, age (+/-10 years) and body weight (+/-20%) and administered a single dose of oseltamivir (75 mg). RESULTS: Oseltamivir and oseltamivir carboxylate C(max) were < or =6% and < or =19% lower, and their AUC(0,infinity) 33% higher and < or =19% lower, respectively, in hepatically impaired patients compared with healthy subjects. These changes are within the safety limits for the drug. CONCLUSIONS: The metabolism of oseltamivir is not compromised [corrected] in hepatically impaired patients. No dose adjustment is required in these patients when receiving oseltamivir.


Subject(s)
Acetamides/pharmacokinetics , Liver Diseases/metabolism , Acetamides/administration & dosage , Acetamides/metabolism , Administration, Oral , Adolescent , Adult , Aged , Area Under Curve , Female , Humans , Male , Middle Aged , Oseltamivir
19.
Int J Pharm ; 257(1-2): 297-9, 2003 May 12.
Article in English | MEDLINE | ID: mdl-12711184

ABSTRACT

This study investigated the site-specific absorption of oseltamivir using targeted delivery and gamma scintigraphy. On four separate occasions, nine healthy male subjects each received a single 150 mg of oseltamivir administered via the Enterion capsule to the stomach, proximal small bowel, distal small bowel and the ascending colon. Pharmacokinetic parameters of oseltamivir and its carboxylate metabolite show that absorption was similar in the proximal and distal small bowel compared to stomach delivery, but reduced from the ascending colon, demonstrating that absorption-rate limited disposition occurred only for the ascending colon. The metabolite-to-parent ratios were minimally reduced. The results support the feasibility of modified-release formulation development whilst confirming the high and consistent oral bioavailability of oseltamivir.


Subject(s)
Acetamides/pharmacokinetics , Antiviral Agents/pharmacokinetics , Colon/metabolism , Drug Delivery Systems , Influenza, Human/drug therapy , Intestine, Small/metabolism , Prodrugs/pharmacokinetics , Adult , Capsules , Cross-Over Studies , Humans , Male , Middle Aged , Oseltamivir
20.
Br J Clin Pharmacol ; 54(4): 372-7, 2002 Oct.
Article in English | MEDLINE | ID: mdl-12392584

ABSTRACT

AIMS: Oseltamivir is an oral ester prodrug of its active metabolite Ro 64-0802, a potent and selective neuraminidase inhibitor of the influenza virus. The object of this study was to evaluate whether the oral absorption of oseltamivir was reduced in the presence of two main classes of antacid, Maalox(R) suspension (containing magnesium hydroxide and aluminium hydroxide) and Titralac(R) tablets (containing calcium carbonate). METHODS: Twelve healthy volunteers completed a randomized, single dose, three-period crossover study. Each volunteer received in a fasted state, 150 mg oseltamivir alone (Treatment A), 150 mg oseltamivir with a 20 ml Maalox suspension (Treatment B), and 150 mg oseltamivir with four Titralac tablets (Treatment C), with 7-10 days washout in between treatments. Plasma and urine concentrations of oseltamivir and Ro 64-0802 were measured using a validated h.p.l.c./MS/MS assay. Pharmacokinetic parameters were calculated for oseltamivir and Ro 64-0802. Since antacids are locally acting drugs and generally not expected to be absorbed substantially into the systemic system, no plasma or urine concentrations of antacids were measured. RESULTS: Bioequivalence was achieved for the primary pharmacokinetic parameters Cmax and AUC(0, infinity ) of Ro 64-0802 following administration of oseltamivir with either Maalox suspension or Titralac(R) tablets vs administration of oseltamivir alone. The bioavailability (90% confidence intervals) of Ro 64-0802 following administration of oseltamivir together with Maalox suspension vs administration of oseltamivir alone, was 90% (83.6, 96.9%) for C(max) and 94.1% (91.4, 96.9%) for AUC(0, infinity); similarly, for Titralac tablets, the equivalent values were 95.1% (88.3, 102%) for C(max) and 94.7% (91.9, 97.5%) for AUC(0, infinity). CONCLUSIONS: The coadministration of either Maalox suspension or Titralac tablets with oseltamivir has no effect on the pharmacokinetics of either oseltamivir or Ro 64-0802, and conversely, there is no evidence that coadministration with oseltamivir has an effect on the safety and tolerability of either Maalox suspension or Titralac tablets. There was no pharmacokinetic interaction between oseltamivir with either antacid, demonstrating that the oral absorption of oseltamivir was not impaired in the presence of antacids containing magnesium, aluminium or calcium.


Subject(s)
Acetamides/pharmacokinetics , Aluminum Hydroxide/pharmacokinetics , Antacids/pharmacokinetics , Antiviral Agents/pharmacokinetics , Calcium Carbonate/pharmacokinetics , Enzyme Inhibitors/pharmacokinetics , Magnesium Hydroxide/pharmacokinetics , Acetamides/administration & dosage , Acetamides/blood , Acetamides/metabolism , Administration, Oral , Adult , Aluminum Hydroxide/administration & dosage , Analysis of Variance , Antacids/administration & dosage , Antiviral Agents/administration & dosage , Antiviral Agents/blood , Calcium Carbonate/administration & dosage , Cross-Over Studies , Drug Combinations , Drug Interactions , Enzyme Inhibitors/administration & dosage , Enzyme Inhibitors/blood , Female , Humans , Influenza, Human/drug therapy , Influenza, Human/metabolism , Magnesium Hydroxide/administration & dosage , Male , Middle Aged , Oseltamivir , Prodrugs , Tablets , Therapeutic Equivalency
SELECTION OF CITATIONS
SEARCH DETAIL
...